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We numerically validate the moment propagation method for advection–diffusion
in a lattice Boltzmann simulation against the analytic Taylor–Aris prediction for dis-
persion in a three-dimensional Poiseuille flow. Good agreement between simulation
and theory is found, with relative errors smaller than 2%. The Péclet number limits
on the moment propagation method are studied, and maximum parameter values are
obtained. We show that a modification of the moment propagation method allows
advection–diffusion simulations with higher Péclet numbers, in particular in the low
Reynolds number limit. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Lattice Boltzmann methods (LBMs) are widely used in fluid dynamics applications as an
alternative to numerical solutions of the Navier–Stokes equation [4]. LBMs are well suited
for parallel simulation [13] and they are especially useful in problems with obstacles of
complex geometry (see, for example, [5, 11, 14, 15]).

In many fluid dynamics applications one is interested in the dispersion of a solute in a
fluid. Examples of such advection–diffusion problems are the spreading of contaminants in
ground water [2], the transport of heat and water vapour from seed potato packagings [22],
tracer dispersion in rough fractures [7], and the transport of nutrients towards a growing
coral colony [11].

Apart from numerical solutions of the macroscopic advection–diffusion equation, sev-
eral methods have been developed to solve advection–diffusion using tracer particle
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distributions. In stochastic methods, discrete particles carry out a random walk that is
biased by the velocity field [19]. Mesoscopic advection–diffusion methods use particle den-
sities rather than discrete particles. Examples of such mesoscopic methods are Flekkøy’s
method [8] and the method of Dawson and co-workers [6, 16]. These methods solve a multi-
ple species miscible flow using the LBM. A similar method is Van der Sman’s method [23].
Van der Sman solves a lattice Boltzmann equation for advection–diffusion, in which the
collision operator is biased by an externally imposed velocity field. The method of Calı́
et al. uses the fourth velocity component in a four-dimensional flow projected onto a lower
dimensional lattice as a tracer [3].

Another mesoscopic method is the moment propagation method [17], which we aim to
validate in this paper. In this method a single scalar per site for each tracer species is propa-
gated. The direction of propagation is biased by the velocity field. The moment propagation
method was originally developed to efficiently calculate the velocity autocorrelation func-
tion (VACF) in lattice gas cellular automata [9, 10, 21] and was later used to calculate the
VACF in the lattice Boltzmann method [17, 18]. The moment propagation method has been
used to solve the advection–diffusion equation in a simulation of the transport of nutrients
to a growing coral colony [11] and was further developed to solve electroviscous transport
problems [24].

The moment propagation method has a few advantages relative to other tracer dispersion
methods. In many applications one needs a preaveraged, smooth distribution of tracer.
For these applications a stochastic method [19] may not be the most efficient. Since the
moment propagation method uses only a single scalar per site for each tracer species, the
computational and memory requirements are much lower than for the other methods. Also,
the addition of extra tracer species is relatively easy. Hence, the moment propagation method
seems to be a good choice for solute dispersion applications.

We are unaware of any attempts to numerically validate the moment propagation method
against analytic benchmarks. In this paper, we undertake such validation by comparing the
moment propagation method against the analytic Taylor–Aris result of solute dispersion in
three-dimensional tubes [1].

In addition, we study the Péclet number limits of the moment propagation method. We
find a maximum value of the Péclet number beyond which negative solute concentrations
occur. We present a modification of the moment propagation method, which allows higher
Péclet numbers than the standard moment propagation method.

2. SIMULATION METHODS

2.1. Lattice Boltzmann BGK Method

To obtain the flow field in which the solutes were dispersed, we applied a special form
of the lattice Boltzmann method, the lattice Boltzmann BGK (Bhatnager, Gross, Krook)
method (denoted hereafter as LBGK) [20]. The lattice Boltzmann equation is solved on
a discrete lattice x . On each lattice point there is a set of particle densities fi of discrete
velocity �ci . For each time step �t , the density fi is propagated along the lattice according
to its velocity �ci . The discrete velocities �ci are such that in one time step the particle
densities stream from one lattice site to a neighbouring lattice site. Next, the particle densities
are redistributed according to the collision operator �i . The general form of the lattice
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Boltzmann equation is

fi (�x + �t �ci , t + �t) = fi (�x, t) + �i , (1)

in which � is the collision operator and �ci is the velocity of the particle density fi .
The density � and the fluid velocity �u are obtained from the first- and second-order

moments of the particle distributions

� (�x, t) =
∑

i

fi (�x, t) (2)

and

�u(�x, t) =
∑

i fi (�x, t)�ci

� (�x, t)
. (3)

We used the D3 Q19 model on a cubic lattice. This model is isotropic and satisfies the
Navier–Stokes equations [4].

The collision operator �i can take different forms. In the LBGK method [20], the particle
distribution f is relaxed towards the equilibrium distribution f eq, through

�i = 1

�

(
f eq
i (�x, t) − fi (�x, t)

)
. (4)

The equilibrium distribution f eq(�x, t) is a function of the local density � (�x, t) and the
local velocity �u(�x, t),

f eq
i (� , �u) = tp�

(
1 + �ci · �u

c2
s

+ (�ci · �u)2

2c4
s

− �u · �u
2c2

s

)
, (5)

in which cs is the speed of sound, the index p = �ci · �ci is the square length of the lattice
vectors, and tp is the corresponding equilibrium density for �u = 0 [20]. For the D3 Q19

lattice, which we have used in this paper, t0 = 1/3, t1 = 1/18, and t2 = 1/36.
The relaxation parameter � determines the kinematic viscosity � of the simulated fluid.

For the D3 Q19 lattice � = (2� − 1)/6 [4]. Throughout this paper, � = 1.0 (� = 1/6). This
value for � is well above the safe lower limit of � [20]. At solid boundaries, a halfway
bounce-back boundary condition was applied [12].

To speed up the computation of a stable flow field, we routinely use the iterative momen-
tum relaxation technique [12]. In this technique, a body force is iteratively balanced with
the frictional forces of the obstacle. The iterative momentum relaxation is started as soon
as the fluid velocity exceeds a desired minimal velocity.

2.2. The Moment Propagation Method

After the iteration of Eq. (1), until a stable flow field f (�x) is obtained, the dispersion
of tracers using the moment propagation method [17] is started. In this method, a scalar
quantity P(�x, t) is released in the lattice. A fraction �/� of P(�x, t) stays on the lattice
node and the remaining fraction is distributed over the neighbouring nodes according to the
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probability f (�x − �ci , t) that a carrier fluid particle moves with velocity �ci after collision,
giving

P(�x, t + 1) =
∑

i

( fi (�x − �ci ) − �/b)P(�x − �ci , t)

� (�x − �ci )
+ �

P(�x, t)

� (�x)
, (6)

where b is the number of velocities in the lattice (in our case b = 19). The parameter �

is used to set the molecular diffusion coefficient Dm . The dependence of Dm on � for a
D3 Q19 lattice is found as follows. Assuming that the moment propagation method solves
the advection–diffusion equation, we can find the diffusion constant by considering the
dispersion of tracer after one time step. A �-pulse of tracer is released in a flow field in
equilibrium at t = 0. At t = 1, the first- and second-order moments �m1 and m2 are

�m1 =
∑

i

f eq
i (�u, � ) − �

19

�
�ci = �u (7)

and

m2 =
∑

i

f eq
i (�u, � ) − �

19

�
�ci · �ci = 1 + �u · �u − 30

19

�

�
. (8)

Using Dm = 1
6

d(m2 − �m1 · �m1)
dt = 1

6 [m2 − �m1 · �m1]t=1, we find that

Dm = 1

6
− 5

19

�

�
. (9)

We measured Dm in a D3 Q19 model for a wide range of values of �. These measurements
agreed with Eq. (9), with a residual sum of squares of 4 × 10−17 (data not shown).

The diffusion coefficient can also be derived from the moment propagation method
without the prior assumption that it solves the advection–diffusion equation. Following the
method used by Warren [24], where a uniform flow field is assumed, it is straightforward
to show that the moment propagation method (Eq. (6)) approximates to second order the
advection–diffusion equation

∂ P

∂t
+ �u · grad P = Dm∇2 P. (10)

For the diffusion coefficient Dm , this analysis results in the expression

Dm = 1

2

(
c2

s − 1

bd

∑
i

�ci · �ci
�

�

)
, (11)

with b the number of velocities in the lattice and d the dimensionality of the lattice. Note
that for the D3 Q19 lattice, for which cs = 1/

√
3 [20], this equation agrees with the result

obtained in Eq. (9).
At solid boundaries, a halfway bounce-back boundary condition was used; tracer that is

propagated into a solid point bounces back immediately and stays where it was.
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3. RESULTS

3.1. Taylor–Aris Dispersion in 3D Poiseuille Flow

The moment propagation (MP) method was validated against the analytic Taylor–Aris
prediction of tracer dispersion in a fluid flowing through a straight cylindrical tube [1]. In
this theory, the dispersion coefficient K describes the dispersion of tracer about a point
moving with the mean flow velocity ū; K = 1

2
∂(�2

xx − (�x )2)
∂t , where �x and �2

xx are the first-
and second-order moments of the spatial tracer distribution along the flow direction. Aris
has shown that the dispersion coefficient K is the sum of the molecular diffusion coefficient
Dm and of a contribution by advection,

K = Dm + ��2ū2/Dm, (12)

where, in the case of a three-dimensional Poiseuille flow, � = 1/48 and � is the tube radius.
The simulations were carried out in a simulation box with a cross section of 54 × 54

lattice units, in which a tube of radius 25 was constructed. We initiated the simulation
with a �-pulse of solute in the middle of the tube. The first- and second-order moments
parallel to the flow direction �x and �2

xx were measured, from which the spatial variance
V = �2

xx − (�x )2 was computed. After an initial transient, approximately the time needed
for the solute to reach the wall of the tube by diffusion, the tracer variance V increased
linearly with a slope of 2K . This linear dependence no longer holds when a fraction of
tracer reaches the end of the tube and reenters the tube over the periodic boundary. This
time of reentry is dictated by advection and diffusion along the flow direction.

The size of the simulation box was set by considering estimations of the length of the
initial transient and of the tracer reentry time. In this way it was ensured that the two time
scales did not overlap, enabling the observation of the linear domain, which was needed
for measuring the dispersion coefficient. The length of the initial transient was estimated
as follows. The initial pulse of solute diffuses perpendicularly to the flow direction as a
Gaussian. Using tD = r2

2Dm
, for the range of diffusion constants considered, the time tD at

which 66% of the tracer has reached the walls of the tube is in the range 1750 < tD < 3500.
The tracer reentry time depends on the length of the tube. The time needed for 1% of solute
in a fluid moving at a uniform velocity umax to travel a distance �x by means of diffusion and
advection was estimated by solving the equation ut + 3

√
2Dmt = �x . Hence, the settings of

the simulation box length were based on the mean velocity and on the diffusion coefficient
(see Table I), thus compromising between tracer reentry times and computational resources.

TABLE I

Settings of the Simulation Box Length

Dm ū Tube length

<0.1 ū ≤ 0.01 800
<0.1 0.02 ≤ ū ≤ 0.04 1600
<0.1 0.04 ≤ ū ≤ 0.07 3200
<0.1 ū ≥ 0.07 6400

0.166 ū < 0.03 800
0.166 0.01 ≤ ū ≤ 0.03 1600
0.166 0.03 ≤ ū ≤ 0.05 3200
0.166 ū ≥ 0.05 6400
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A stable (paraboloid) flow field was computed for a range of mean flow velocities between
0.0 and 0.103 in lattice units per time step. For a 3D Poiseuille flow, the maximum velocity
umax = 2ū, giving a maximum flow velocity of 0.206. These flow velocities correspond
to Reynolds numbers (Re = ūl

�
, where l = 25 l.u., the tube radius) between 0.0 and 15.5,

which are all in the laminar regime. We measured the lattice Péclet number Pélat = umaxl
Dm

, in
which l = 1 l.u. The lattice Péclet number is locally defined with respect to the lattice nodes
of the advection–diffusion simulation and is independent of the size of the obstacle. The
maximum lattice Péclet numbers occurring in the simulations were between 0.0 (umax = 0,
Dm = 1/6) and 1.892 (umax = 2ūmax = 0.182, Dm = 0.096).

In Fig. 1 we have plotted the time-dependent dispersion coefficient D(t) = 1
2

dV (t)
dt . At

t = 0, the dispersion coefficient was equal to the molecular diffusion coefficient D(0) = Dm .
As the initial delta pulse spread in the y- and z-directions by diffusion, the dispersion
coefficient increased until it reached the Taylor–Aris prediction (the dotted lines). It is easy
to see that the dispersion coefficient should increase as the delta pulse spreads over the
paraboloid flow field; the initial field of solute expands ever more quickly as tracer diffuses
into layers of lower velocity and lags behind the tracer moving in flow layers of higher
velocity. The duration of the initial transient tD was somewhat shorter than our estimation
earlier in this section. This shows that it was a conservative assumption that 66% of the
tracer should have reached the tube wall for the initial transient to end.

We measured the dispersion coefficient D in a time window well after our estimate of the
initial transient and well before the estimation of the onset of tracer reentry. The dispersion
coefficients were plotted together with the prediction according to the Taylor–Aris theory in
Fig. 2. All simulated values were within a 2% range from the analytical Taylor–Aris result.
Hence, our simulation results are in good agreement with the Taylor–Aris theory.

3.2. Limits to the Péclet Number

In the moment propagation method (Eq. (6)) the diffusion coefficient is set using pa-
rameter �, which is the probability that a tracer particle stays at the same lattice site. This
poses a limit onto the maximum Péclet number that can be simulated using the MP method.
The reason is that negative tracer concentrations may appear if the value fi (�xi − ci ) − �

b in
Eq. (6) becomes negative. In this section we investigate the maximum Péclet number that
can be used in an MP simulation to ensure that ∀�x,i : �

b ≤ fi (�x).
The maximum lattice Péclet number follows from the maximum � for which each

streamed tracer quantity fi (�x − ci ) − �/b ≥ 0 (see Eq. (6)). Assuming to first approximation
that fi ≈ f eq

i , we can write ( fmin = min( fi )),

�max(� , �u) = b f eq
min(�umax, � ), (13)

in which b = 19 for the D3 Q19 model and f eq is the equilibrium distribution (Eq. (5)). The
maximum lattice Péclet number is calculated using the diffusion coefficient (Eq. (9)), giving

Pémax = |�umax|
Dmin

= |�umax|
1
6 − 5 f eq

min(�umax, � )
, (14)

in which |�umax| is the maximum velocity occurring in the simulation.
In Fig. 3 we have plotted the maximum lattice Péclet number for which the MP method

still gives valid results. The maximum allowed lattice Péclet number is plotted for three
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FIG. 1. Validation of the moment propagation scheme. The time-dependent dispersion coefficients
D(t) = 1

2
dV (t)

dt
, in which V = �2

xx − (�x )2, were measured in a 3D Poiseuille flow in a tube of radius 25. � = 0
(Dm = 1/6) and � = 0.27 (Dm = 0.096) for the upper and lower panels, respectively. The tube lengths were set
according to Table I. The mean flow velocity u = 1

2
umax is given for each line in lattice units. The Taylor–Aris

predictions of the dispersion coefficients are shown as dashed lines.

flow directions. Of these three flow directions, the direction (1,1,0) gives the lowest allowed
Péclet number. For this flow direction the smallest possible value of fi will occur opposite
the dominating flow direction. In the D3 Q19 model, the velocities |�ci | =

√
2 will generally

have the lowest density fi . For these velocities tp = 1/36 (see Eq. (5)).
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FIG. 2. Dispersion coefficients computed with the moment propagation method for a three-dimensional
Poiseuille flow in a cylindrical tube of radius 25. The Taylor–Aris prediction is shown as a solid line. The length
of the tube was varied between 800 and 6400 l.u., depending on the flow velocity and the diffusion coefficient.
See text for further details. All simulated values were within a 2% interval from the prediction.
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FIG. 3. The maximum lattice Péclet numbers that can be simulated using the moment propagation method
and the LBGK method on a D3 Q19 lattice is plotted against the norm of the maximum velocity occurring in the
simulation. Velocities directed along the two lattice vectors (1,0,0) and (1,1,0) and along the nonlattice vector
(1,1,1) are shown. The use of lattice Péclet numbers higher than the maximum allowed Péclet number may result
in negative tracer concentrations.
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3.3. A Modification of the Moment Propagation Method

In the standard MP scheme, the molecular diffusion coefficient Dm is lowered by sub-
tracting an equal amount of tracer �/b from the tracer moving to the neighbouring sites.
As we argued in Section 3.2, this may lead to negative tracer values, especially for the
relatively small values of fi for the velocities |�ci | =

√
2.

This problem can be diminished by using the following modification of the moment
propagation method. In this modified scheme, the amount of resting tracer particles is
weighted according to the equilibrium distribution for a resting fluid f eq

i (u = 0, � ),

P(�x, t + 1) =
∑

i

[
( fi − �∗ f eq

i (�u = 0, � ))P

�

]
�x−�ci ,t

+ �∗ P(�x, t), (15)

where the whole quantity inside [. . .] is evaluated at (�x − �ci , t). Hence, we adjust the amount
of extra rest particles in the streaming direction. The dimensionless parameter �∗ is the
fraction of tracer remaining at the same lattice site after propagation. Note from Eq. (5) that
f eq
i (�u = 0, � ) = tp� , so we can rewrite Eq. (15) as

P(�x, t + 1) =
∑

i

[(
fi

�
− tp�

∗
)

P

]
�x−�ci ,t

+ �∗ P(�x, t), (16)

which is equivalent to the moment propagation method introduced by Warren [24].
The molecular diffusion coefficient Dm is set using parameter �∗, as in the standard MP

scheme. Releasing a �-pulse, after one time step the first- and second-order moments �m1

and m2 are

�m1 =
∑

i

f eq
i (�u, � ) − �∗ f eq

i (�u = 0, � )

�
�ci = �u (17)

and

m2 =
∑

i

f eq
i (�u, � ) − �∗ f eq

i (�u = 0, � )

�
�ci · �ci = 1 + �u · �u − �∗. (18)

Thus, the diffusion coefficient Dm = 1
6

d(m2 − �m1 · �m1)
dt = 1

6 [m2 − �m1 · �m1]t=1 depends on �∗

as

Dm = 1

6
− 1

6
�∗. (19)

Our measurements agreed with this expression, with a residual sum of squares of 1 × 10−16

(data not shown). Warren has shown analytically for a uniform flow field that this scheme
approximates to second order the advection–diffusion equation (Eq. (10)) with Dm =
1
2 c2

s (1 − �∗). Note that this expression for the diffusion coefficient agrees with Eq. (19).
Using the reformulation of the MP scheme, we can reach higher Péclet numbers without

obtaining negative tracer concentrations. As in Section 3.2, the Péclet number limits of the
modified moment propagation scheme (MMP scheme) are calculated from the maximum
allowed �∗, �∗

max(�u), which can be obtained from Eq. (15):

�∗
max(�u) = min

(
f eq
i (�u, � )

f eq
i (�u = 0, � )

)
. (20)
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FIG. 4. The maximum lattice Péclet numbers that can be simulated using the modified moment propagation
method and the LBGK method on a D3 Q19 lattice. Velocities directed along the two lattice vectors (1,0,0) and
(1,1,0) and along the nonlattice vector (1,1,1) are shown. The use of lattice Péclet numbers higher than the
maximum allowed Péclet number may result in negative tracer concentrations.

The maximum allowed lattice Péclet number follows from Eqs. (19) and (20):

Pémax(�umax) = |�umax|
Dmin

= |�umax|
1
6 − 1

6�∗
max(�umax)

. (21)

In Fig. 4 the maximum allowed lattice Péclet number in the MMP scheme is plotted against
the maximum velocity occurring in the simulation.

For typical velocities of 0.05 to 0.1 l.u., the maximum Péclet number in the MMP scheme
is 1.7 to 1.3 times higher than in the MP scheme. For lattice velocities in the limit to 0, the
maximum lattice Péclet number is still at least

√
2 for the MMP scheme, whereas in the

MP scheme the maximum lattice Péclet number approaches 0. From Eq. (20) it follows that
for the MMP scheme limu→0 �∗

max = 1, so (Dm)min = 0. This means that in the low lattice
velocity limit, the normal operation limit of the LBGK method, one can still set the diffusion
coefficient small enough to reach Péclet numbers up to

√
2. In the MP scheme however,

limu→0 �max = 19 f eq
min(�u = 0, � ) = 19�

36 , giving (Dm)min =1/36. So, in the low lattice veloc-
ity limit, in the MP method one cannot set Dm small enough to reach high Péclet numbers.

3.4. Validation of the Modified Moment Progagation Method

We also validated the MMP scheme against the Taylor–Aris prediction of dispersion in a
three-dimensional Poiseuille flow. We set �∗ = 0.50, for which Dm = 0.083. This value of
�∗ is very close to the maximum allowed �∗ for umax = 0.2 (�∗

max = 0.52). The tube lengths
were set according to the data in Table I.

In Fig. 5 the time-dependent dispersion coefficient D(t) is plotted. After the initial tran-
sient, the dispersion coefficients approached the Taylor–Aris prediction. In Fig. 6 we have
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FIG. 5. Validation of the modified moment propagation method. The time-dependent dispersion coefficient
D(t) = 1
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, in which V = �2

xx − (�x )2, was measured in a 3D Poiseuille flow in a tube of radius 25. �∗ = 0.50,
for which Dm = 0.083. The tube length was set according to Table I. The flow velocity in lattice units is given for
each line. The Taylor–Aris predictions of the dispersion coefficients are shown as dashed lines.
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FIG. 6. Dispersion coefficients computed with the modified moment propagation method for a three-
dimensional Poiseuille flow in a cylindrical tube of radius 25. The Taylor–Aris prediction is shown as a solid
line. Mean flow speeds are given in lattice units. The length of the tube was varied between 800 and 6400 l.u.,
depending on the flow velocity and the diffusion coefficient. See text for further details. All experimental values
were within a 2% interval from the prediction.
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plotted the measured Taylor–Aris dispersion coefficients for Dm = 0.083, for Dm = 0.1250,
and for Dm = 1/6, together with the Taylor–Aris prediction. Note that for Dm = 1/6, there
is no difference between the MP and the MMP schemes. All our measurements were less
than 2% above the Taylor–Aris prediction.

4. DISCUSSION

In summary, our simulations of dispersion in a three-dimensional Poiseille flow, using the
moment propagation method in the LBGK method, reproduced the analytical Taylor–Aris
result [1].

For the three-dimensional tube flows, the measured dispersion coefficients were never
further than 2% from the Taylor–Aris prediction. The same experiments were carried out
for a 2D Poiseuille flow in tubes of width 50 and of 100 l.u. (data not shown). In these
experiments, all dispersion coefficients were closer than 1% to the Taylor–Aris prediction.
The fact that we still found accurate agreement with the Taylor–Aris prediction in narrow,
coarsely discretised circular tubes suggests that the moment propagation method is a suitable
method for advection–diffusion problems in complex geometries, such as the transport of
nutrients and other chemicals towards a growing coral colony [11].

The dispersion coefficients as obtained in our three-dimensional simulations were sys-
tematically slightly larger than the Taylor–Aris predicition. In our two-dimensional simu-
lations the dispersion coefficients approached the Taylor–Aris prediction from below (data
not shown). This observation agrees with the findings by Calı́ et al. [3]. Using their method
in a two-dimensional Poiseuille flow, they also found dispersion coefficients that were sys-
tematically slightly smaller than the Taylor–Aris prediction. These authors attributed their
systematic error “to the fact that the assumption on which [the Taylor–Aris prediction] is
based is less and less valid as the Péclet-number increases” [3]. Indeed the systematic errors
in our two- and three-dimensional simulations increased with the flow velocity.

Note that our simulations also agreed with the Taylor–Aris prediction for values of �

and �∗ for which negative concentrations occur (data not shown). Also, measurements of
the diffusion coefficient Dm agreed with the predictions in Eqs. (9) and (19) far beyond the
maximum values of � and �∗. However, such parameter values give unphysical results be-
cause some tracer concentrations will be negative. It is therefore important to check whether
negative concentrations occur in a simulation using the moment propagation method.

Using the modification of the moment propagation method shown in this paper, higher
Péclet numbers can be reached than in the standard moment propagation method. As we
have shown in Section 3.3, this holds in particular in the low lattice velocity limit, for
which the LBM produces more accurate flow fields [4]. To reach the maximum Péclet and
Reynolds numbers that are correctly simulated with the moment propagation method, the
lattice velocity should be kept at moderate values (<0.1 l.u.), the diffusion coefficient should
be set to the minimum value still allowed by Eq. (20), and the kinematic viscosity must be
set to a minimal value. In steady-state flows the Péclet number limits are independent of
the kinematic viscosity. However, in unsteady flows the assumption that fi ≈ f eq

i may not
always be valid and the Pèclet number limits may consequently be lower.

The moment propagation method has some advantages in comparison to other mesoscopic
methods. The memory requirements are low; for each tracer species we need a single scalar
per lattice node. By comparison, for most of the other mesoscopic methods (Flekkøy [8],
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Dawson et al. [6], and Van Der Sman [23]), we would need 19 extra scalars per lattice
node for each tracer species in the D3 Q19 model. On the machine we use (a Linux Beowulf
cluster, on which a double is eight bytes long), for a typical lattice of 2563 we need 2 Gb
memory for the flow field and only an extra 128 Mb of memory per tracer species for the
moment propagation method. For the other mesoscopic methods we would have needed an
extra 2 Gb per tracer species. The method of Calı́ et al. [3] does not need extra memory for
the tracer, because it uses a quantity in the flow field itself as a tracer. However, in Calı́’s
method it is not possible to tune the molecular diffusion constant Dm as in the moment
propagation method. Also, no extra tracer species can be added, which is a straightforward
operation in the moment propagation method.

In summary, in the range of Péclet and Reynolds numbers studied, our simulations of
the moment propagation method accurately reproduced the Taylor–Aris prediction of the
dispersion coefficient. We found limits to the Péclet numbers, beyond which the moment
propagation method produces unphysical results. If these limits to the Péclet number are
taken into account, the moment propagation method is a valuable and valid computational
tool for the simulation of advection–diffusion processes.
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